
Eur. Phys. J. B 2, 393–398 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Springer-Verlag 1998
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Abstract. For fermionic model systems with a separable interaction the BCS equations are solved self-
consistently. In addition, the possibility of a liquid-gas phase transition is considered by inspecting ther-
modynamic stability. Different examples of temperature-density phase diagrams are given depending on
the parameters of a model interaction. In particular, a liquid-gas binodal anomaly is found due to the
superposition of the superfluid and the liquid-gas phase transition.

PACS. 05.30.Fk Fermion systems and electron gas – 64.70.Fx Liquid-vapor transitions – 67.20.+k Quan-
tum effects on the structure and dynamics of nondegenerate fluids (e.g., normal phase liquid 4He)

1 Introduction

An interesting phenomenon in interacting fermion sys-
tems is pairing, which leads to a superfluid phase tran-
sition. If the attractive part of the interaction is strong
enough to form a bound state in the low density limit, a
crossover from Bose-Einstein condensation (BEC) at low
densities to BCS pairing at high densities is expected to
occur (for an overview of relevant systems see [1]). There
are different systems in condensed matter physics, e.g.,
the electron-hole system in excited semiconductors where
such a crossover may occur [2,3]. Symmetric nuclear mat-
ter is a particular example of a strongly coupled quantum
liquid with a crossover from BEC to BCS pairing [4,5].

However, homogeneous solutions of the equation of
state including the transition to superfluidity have to be
excluded if the condition of phase stability is violated. The
corresponding instability leads to a liquid-gas phase tran-
sition which is connected with a jump of the density at
given temperature. Therefore, an interesting question is
whether the pairing transition, which may occur at low
temperatures in an interacting fermion system, can be re-
alized in thermodynamic equilibrium.

For instance, in symmetric nuclear matter the pairing
transition [6] is hidden to a large extent by the nuclear
matter liquid-gas phase transition [7,8]. Nevertheless, ef-
fects of pairing are observable in finite systems (nuclei, see
[9]) or in asymmetric nuclear matter (neutron stars, see
[10]).

In the present paper we show how the ordinary liquid-
gas transition in a normal system is influenced by a pairing
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transition. A main objective is the study of the modifica-
tion of the instability region in the temperature-density
plane. We consider a model system with a general form
of the interaction that allows us to explore different types
of phase diagrams, depending on the overlap between the
liquid-gas phase coexistence area and the superfluid phase,
and draw some conclusions for thermodynamic properties.

2 Pairing and thermodynamic stability

Standard BCS theory [11] describes superconductivity as
well as superfluidity in fermionic systems by the forma-
tion of Cooper pairs as a result of an effective attraction.
The variational Hamiltonian with fermion creation and
annihilation operators a+

1 and a1 reads

H =
∑

1

(
k2

1

2m
− µ)a+

1 a1 (1)

+
1

2

∑
1,2,1′,2′

V (12, 1′2′) a+
1 a

+
2 a2′a1′ .

The indices denote quantum numbers such as momentum
and spin: 1 = {k1, σ1} or 1̄ = {−k1,−σ1}.

Here, the set of self-consistent BCS equations at finite
temperature is reviewed from a thermodynamic Green’s
functions approach using a pair cut-off procedure to de-
couple higher order correlations [8]. For convenience, the
reduced Planck constant ~ and the Boltzmann constant
kB are omitted in the following.

The single particle energy ε1 in the grand canoni-
cal ensemble contains the selfenergy Σ in BCS meanfield
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approximation

ε1 =
k2

1

2m
− µ+ReΣBCS(1), (2)

ReΣBCS(1) =
∑

2

[V (12, 12)− V (12, 21)] 〈a+
2 a2〉. (3)

The mean occupation number of a single fermion state |1〉
is given by

〈a+
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1

2
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2
√
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1 +∆2(1)
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]
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The gap function, ∆(1), is given by the equation

∆(1) = −
∑

2

V (11̄, 22̄)∆(2)

2
√
ε2

2 +∆2(2)
tanh

[√
ε2

2 +∆2(2)

2T

]
. (5)

The Dyson equation (3) for the single particle self energy,
the mean occupation number equation (4) and the gap
equation (5) represent a set of equations that must be
solved simultaneously at given temperature.

Above a critical temperature for the onset of pairing,
TBCS, this set of equations has only the solution with
vanishing gap ∆(1) = 0. This is equivalent to the Hartree-
Fock (HF) mean field solution. For this case the mean oc-
cupation number in equation (4) coincides with the Fermi
distribution function

〈a+
1 a1〉 = (exp[ε1/T ] + 1)−1 for T ≥ TBCS. (6)

Below TBCS a solution with ∆(1) = 0 and another solu-
tion with ∆(1) 6= 0 exist. Only the latter one is stable and
characterizes the superfluid phase.

Summing up the mean occupation numbers, equa-
tion (4), a relation between chemical potential, temper-
ature and single particle density follows:

n(T, µ) =
1

V

∑
1

〈a+
1 a1〉. (7)

However, this equation can only be considered as an equa-
tion of state if the criterion of thermodynamic stability is
fulfilled.

In general, a thermodynamically stable system in equi-
librium is given by a minimum of the grand canonical
potential Ω(T, V, µ), that can be obtained by means of
equation (7)

Ω(T, V, µ) = V

∫ µ

−∞
dµ′ n(T, µ′). (8)

Correspondingly, the condition for thermodynamic stabil-
ity is

∂µ

∂n
|T ≥ 0. (9)

The violation of this condition is a signature of a first or-
der phase transition. It can be caused by an attractive
two-particle interaction. The respective instability region
separates the stable phases, which in the following are de-
noted as the gas and the liquid phase. The coexistence
region of both phases is determined from a Maxwell con-
struction. Its envelope is denoted as the binodal.

3 Results for systems with separable
interaction

In our exploratory calculation for a fermion system the
interaction V (12, 1′2′) is modeled by a separable poten-
tial that has advantageous analytic properties. According
to the method of Ernst, Shakin and Thaler [12] any given
potential can be represented by a series of separable po-
tentials. In each scattering channel α the interaction can
be parametrized by a potential Vα(k, k′) of rank N which
is separable in the incoming, k = (k1 − k2)/2, and outgo-
ing, k′ = (k1′ − k2′)/2, relative momenta

Vα(
K

2
+ k,

K

2
− k ,

K ′

2
+ k′,

K ′

2
− k′) = Vα(k, k′)δKK′

=
N∑

i,j=1

vαi(k) λαij vαj(k
′). (10)

It does not depend on the total momentum K = k1 + k2.
This kind of potential is frequently used in nuclear physics
to model the nucleon-nucleon interaction (e.g., [13,14])
or semiconductor physics for the electron-hole interaction
(e.g., [2]). It allows the explicit solution of the Schrödinger
equation as well as for the T–matrix in the formalism of
thermodynamic Green’s functions.

An implicit expression for the gap energy follows from
equation (5) for each (uncoupled) scattering channel

1 = −

∫
dk3

(2π)3

V (k, k)

2
√
ε2
k +∆2(k)

tanh

[√
ε2
k +∆2(k)

2T

]
.

(11)

For vanishing gap energy the Thouless criterion for the
onset of pairing [15] results (equivalent to the pole
condition of the thermodynamic two-particle T -matrix,
T (kK, k′K ′;E), at zero total momentum and two-particle
energy E = 2µ [4])

1 = −

∫
dk3

(2π)3

V (k, k)

2εk
tanh

(
εk

2 TBCS

)
. (12)

For a strong-enough interaction bound state forma-
tion may occur. The bound state energy, E(K), can
be determined from the pole in the two-particle T -
matrix T (kK, k′K ′;E). The bound state merges with
the continuum of scattering states if E(K) = K2/4m +
2ReΣBCS(K/2). The disappearence of the pole in the
two-particle T -matrix for total momentum K = 0 is
equivalent to the Mott condition where bound states are
dissolved due to the Pauli-blocking in the system [4]

1 = −

∫
dk3

(2π)3

V (k, k)

k2/m+ 2ReΣBCS(k)− 2ReΣBCS(0)

× tanh
( εk

2 TMott

)
. (13)

In the following, we present results of numerical calcula-
tions with different potential parameter sets in the s-wave
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Fig. 1. Isotherms of chemical potential versus density (interac-
tion with rank 1 potential and inverse potential range a = 0.4).
Bold lines represent the stable BCS solution with finite gap be-
low TBCS , thin lines the unstable solution with zero gap.

channel for a fermion system that shows both, a super-
fluid and a liquid-gas phase transition. We do not focus
on a particular system. Instead, we want to study in an
exploratory calculation systems that are expected to show
some effects due to the interplay of both transitions.

3.1 Model calculation with pure attractive interaction

To explore possible effects of the interplay of both transi-
tions, we start with the most simple case of a separable po-
tential of rank 1. It has only an attractive term: V (k, k′) =
−v(k)v(k′) with a form factor v(k) = c(k2 + a2)−1, where
c and a are potential strength and range parameters. We
consider a strongly interacting system where bound states
can be formed. Solving the Schrödinger equation with this
potential one obtains the binding energyE0

b and can elim-
inate the potential strength parameter c. Thus, any quan-
tity in our formulae can be represented as a combination
of energy units measured in |E0

b | and length units mea-

sured in ~/
√
m|E0

b |. Then the potential strength can be
expressed by c2 = 8πa(a + 1)2 and the inverse poten-
tial range, a, remains the only (dimensionless) parameter.
Variation of this parameter leads to situations with dif-
ferent overlaps of the liquid-gas instability and the super-
fluid region. The resulting effects can be compared sys-
tematically. A system with such an interaction potential
and spin-degeneracy 2 (fermions with spin ± 1/2) shows
no liquid-gas transition if the potential range is too short
(a > 1) while the superfluid phase remains. For better
comparison the quantities in all figures are plotted in units
of the critical temperature Tc and the critical density nc
of the liquid-gas phase transition (reduced units).

Figures 1 and 2 result from the self-consistent solution
of equations (3-5, 7) for the rank 1 potential with inverse
potential range a = 0.4. In Figure 1 isotherms of the solu-
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Fig. 2. Phase diagram in the temperature-density plane for
a fermion system with rank 1 potential and inverse potential
range a = 0.4. The liquid-gas coexistence region resulting from
the stable BCS solution (bold dashed-dotted) is compared to
the unstable solution (thin dashed-dotted) with vanishing gap.
The full bold line shows the onset of pairing at temperature
TBCS(n) according to equation (12). Its maximum is below
the critical temperature Tc for the liquid-gas transition. The
dashed Mott line is obtained from equation (13) and shows
where bound states start to break up at higher densities due
to Pauli-blocking.

tions with finite gap and with zero gap are compared. Both
kinds of isotherms show a thermodynamic instability if the
temperature is lower than the critical temperature Tc of
the liquid-gas transition. Above the maximum tempera-
ture for the onset of pairing TBCS = 0.8Tc only the zero
gap solution (HF solution) remains. Figure 2 shows the re-
sulting temperature-density phase diagram after applica-
tion of the Maxwell construction to the isotherms µ(n, T ).
The coexistence region determined from the BCS equa-
tions with finite gap has shrunk if compared to the zero
gap solution. This effect of binodal anomaly is clearly ob-
tained for temperatures below the point of intersection
between the binodal and the critical temperature for the
onset of pairing.

Figure 3 shows the phase diagram for a system with
shorter potential range (a = 0.6). This particular case
shows an even more distinct coexistence anomaly. Here,
the interaction leads to a superfluid phase that completely
encloses the liquid-gas instability region. Hence, the full
BCS mean field solution deviates strongly from the HF
solution. Even the critical point is shifted to higher tem-
peratures and densities while the coexistence region forms
an island-like structure. The strong influence of the gap
on the renormalization of the chemical potential destroys
the instability if the temperature approaches zero.
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Fig. 3. Phase diagram in the temperature-density plane for
a fermion system with rank 1 potential and inverse potential
range a = 0.6. In contrast to the (unstable) solution with van-
ishing gap (thin dashed-dotted), the liquid-gas coexistence re-
gion resulting from the stable solution with finite gap (bold
dashed-dotted) has shrunk to an island-like area. The full bold
line shows the onset of pairing at temperature TBCS(n) ac-
cording to equation (12). Its maximum is above the critical
temperature Tc. The dashed Mott line, equation (13), shows
where bound states start to break up at higher densities due
to Pauli-blocking.

3.2 Model calculation with attractive and repulsive
interaction

In a next step we employ a more general separable poten-
tial including an attractive tail and a repulsive core. That
allows us to explore a larger variety of possible types of
phase diagram. For sake of simplicity, we have used a sepa-
rable potential of rank 2 which has a long range attraction
term (index “a”) and short range repulsion term (index
“r”), each of them with one range and one strength pa-
rameter

V (k, k′) = vr(k)vr(k
′)− va(k)va(k′) (14)

with
vi(k) = ci(k

2 + a2
i )
−1, i = {r, a}.

This type of potential was used for the parametriza-
tion of the nucleon-nucleon interaction [14]. It repre-
sents the fact that, besides a long range attraction, a
short range repulsion is necessary to reproduce such two-
particle properties as the nucleon-nucleon scattering phase
shifts. One of the parameter sets for the 3S1 partial
wave (neutron-proton scattering) presented in [14] is ar =

4.54 fm−1, cr = 566.0
√

MeV/fm, aa = 1.908 fm−1 and

ca = 155.6
√

MeV/fm. Note that the strength parameters
given in [14] already contain a factor (2π2)−1. With the
nucleon mass a constant ~2/m = 41.46 MeVfm2 is used.
For nuclear matter, the influence of the superfluid phase
on the liquid-gas coexistence region is not significant since
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Fig. 4. Isothermes of chemical potential versus density ac-
cording to equation (7) for a system with the interaction in
equation (14). Bold lines show the stable BCS mean field solu-
tion with non-vanishing gap below TBCS , thin lines represent
the unstable solution with vanishing gap (reduced units).

the superfluid transition region is well below and covered
by the liquid-gas instability [8].

In our model calculation we have chosen a rank 2 po-
tential with arbitrary parameters which not necessarily re-
fer to the particular case of a nucleon-nucleon interaction.
To highlight the effect of the interplay between the super-
fluid and the liquid-gas transition we have used the follow-
ing parameter-set for the potential in equation (14) ar =

2.934 fm−1, cr = 770.4
√

MeV/fm, aa = 1.908 fm−1 and

ca = 355.4
√

MeV/fm. The results of the self-consistent
solution of the set of equations (3-5, 7) for a system with
spin degeneracy 4 (e.g., with spin and isospin) are shown
in Figures 4 and 5. A significant difference between the
renormalization of the chemical potential for a finite gap
solution and for a zero gap solution inside the superfluid
phase is obtained (see Fig. 4). In the finite gap solution a
sharp cusp occurs at densities where superfluidity sets in.
This behaviour is typical for a second order phase transi-
tion, for which the first derivative of the thermodynamic
potential is continuous but not differentiable. In addition,
a liquid-gas instability occurs for both kinds of solutions.
Both solutions coincide above the maximum critical tem-
perature for superfluidity, TBCS = 0.85Tc.

Figure 5 follows like Figure 5 after application of the
Maxwell construction to the isotherms µ(n, T ). It shows
a situation where the superfluid phase is not hidden by
the liquid-gas instability region for higher densities. The
point, where the normal liquid, the superfluid and the in-
stability region meet together, has a temperature of about
0.64Tc. In the following, this point is denoted analogous to
the corresponding point in the helium phase diagram (see
discussion below) as λ-point. Here, its value is the same
order of magnitude as the maximum critical temperature
for the onset of pairing TBCS = 0.85Tc. Compared to the
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Fig. 5. Phase diagram in the temperature-density plane for
the same system as in Figure 4. The liquid-gas coexistence
region resulting from the stable BCS solution (bold dashed-
dotted) is compared to unstable solution (thin dashed-dotted)
with vanishing gap. The full bold line shows the onset of pairing
at temperature TBCS(n), according to equation (12) (reduced
units).

unstable solution with vanishing gap the area of the liquid-
gas coexistence region is clearly reduced in the case of the
stable BCS solution.

4 Discussion

We have considered phase diagrams of strongly interacting
fermion systems showing both liquid-gas and superfluidity
transitions. Examples with a rank 1 separable interaction
are presented. To cover a richer variety of phase diagrams
we have also considered a rank 2 separable interaction
potential. For a special set of parameters we modeled a
phase diagram where the critical point of the liquid-gas
transition and the λ-point (point of intersection between
binodal and superfluid transition temperature) are of the
same order of magnitude. Then an essential deformation of
the binodal near the λ-point is obtained, which is denoted
as binodal anomaly. If the coexistence region determined
for vanishing gap energy is completely covered by the su-
perfluid phase, as shown in Figure 3, the binodal derived
from the stable BCS solution is changed completly. We do
not know whether systems of this type occur in nature.

Symmetric nuclear matter is an example of a fermionic
system that is known to exhibit a liquid-gas and a super-
fluid phase transition [4,8]. However, the influence of the
superfluid region on the shape of the liquid-gas instability
is negligibly small since it is almost completely hidden by
the latter and the critical liquid-gas temperature (about
15-20 MeV) is much higher than the point of intersection
between the binodal and the critical BCS temperature,
which occurs below 1 MeV.

In asymmetric nuclear matter the liquid-gas transition
region is supressed [16]. Singlet pairing (neutron-neutron)
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Fig. 6. Temperature-density diagram for 4He showing different
stable phases and the coexistence region limited by the binodal,
which separates liquid and gas phases (data taken from [17]).
The critical point is Tc = 5.25 K, nc = 17.3 mol/l and pc =
2275 hPa. Inset: enlarged view near the λ-point (Tλ = 2.17 K,
nλ = 36.5 mol/l and pλ = 50.35 hPa).

becomes more important than triplet pairing (proton-
neutron). For this case, the effect of the binodal anomaly
could become important.

For a further discussion of interacting fermion sys-
tems with strong coupling the possible formation of bound
states has to be taken into account. It becomes important
for the thermodynamic properties of the system at densi-
ties below the Mott-density (see Mott-line in Figs. 2 and
3). The bosonic bound states can undergo Bose-Einstein
condensation. For an appropriate description one must ap-
ply a theory that goes beyond the BCS mean field ap-
proximation. One attempt at a better description of the
normal phase is given by Nozières and Schmitt-Rink [2]
where the correlations are explicitly considered as addi-
tional contributions in the equation of state. In a general-
ized approach (generalized Beth-Uhlenbeck formula) this
method has been applied to the case of nuclear matter in
the normal phase [4,5]. An extension of the method to the
superfluid phase is still lacking.

Finally, we want to focus the readers attention on a
real bosonic system that exhibits a binodal anomaly of
the type discussed above. Helium-4 is an extensively in-
vestigated example that shows both a first order liquid-
gas phase transition and a superfluid phase transition (see
binodal and λ-line in Fig. 6).

It is the only substance known to us having a superfluid
transition temperature, Tλ = 2.17 K, in the same order as
the temperature of the critical point, Tc = 5.25 K. (The
fermionic isotope helium-3 with Tc = 3.34 K shows su-
perfluidity only at temperatures below 2.7 mK.) We have
plotted the helium-4 data [17] of the interesting region in a
temperature-density phase diagram (see Fig. 6). It shows
the stable phases, gas and liquid (normal HeI and super-
fluid HeII), separated by the coexistence region. The inset
is an enlarged view of the region around the λ-point. While
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the liquid-gas coexistence curve (binodal) decreases mono-
tonically with negative slope above the critical density, it
bends back at the λ-point and even has a positive slope
for lower temperatures. This is the phenomenon which we
have described above as a liquid-gas binodal anomaly.

We expect that the binodal anomaly can occur in Bose
systems as well as in Fermi systems in case of an appro-
priate overlap of the liquid-gas instability region and the
superfluid region. Thus, the effects should also be stud-
ied for interacting Bose systems. The last few years have
seen a renewal of interest in the phenomenon of phase
transitions in Bose systems, from both experimental and
theoretical (for an overview [1,18]); especially since the
first atomic Bose condensates have been produced [19].
While the possibility of single-boson BEC is extensively
discussed for dilute systems, it is known that interacting
Bose systems can show a transition analogous to the BCS
transition [20]. This type of bosonic pairing has been in-
vestigated for a wide range of systems, such as pion gases
[22] and atomic gases like 7Li [21].

5 Conclusion

We have considered the phase stability of a fermion system
with respect to a liquid-gas phase transition. Compared to
the solution for vanishing gap energy we have shown that
due to the occurrence of a superfluid phase a deformation
of the coexistence region results. This effect of the liquid-
gas binodal anomaly becomes stronger if the coexistence
region and the superfluid phase overlap in such a way that
the point of intersection between the binodal and the crit-
ical temperature for the onset of superfluidity (λ-point)
is closer to the critical point. For this reason the effect is
negligibly small in symmetric nuclear matter. However, it
could be important in other systems, such as asymmet-
ric nuclear matter or electron-hole liquids with excitonic
molecules in semiconductors. For the latter case the pos-
sible types of phase diagrams are drawn schematically in
[23] showing a binodal anomaly in agreement with our
discussion.

Our calculations are carried out in a self-consistent
mean field approximation for the gap equation. Interact-
ing fermion systems with strong coupling can show the
formation of bosonic bound states (e.g. deuterons and α-
particles, excitons and bi-excitons), which can undergo
Bose-Einstein condensation. For an appropriate descrip-
tion of strong correlations the interaction between bound
states has to be considered in a consistent way. The im-
provement of the self-consistent mean field approach by
including strong correlations is an important point of fu-
ture work (attempts can be found in [3,24]).

As a fermionic example we have discussed nu-
clear matter. The effect of the liquid-gas binodal anomaly

is also expected to occur in Bose systems. An example of
relevance would be a microscopic description of the be-
haviour of helium-4 in the vicinity of its λ-point.

We thank Peter Schuck for reading and discussing the
manuscript.
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Z. Phys. B 99, 83 (1995).
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